标题问题:
A cell-centered finite volume method on locally refined composite Cartesian grids and its application in wetting problems
时候:
2020年12月10号上午10:00-12:00
地点:
腾讯集会(ID:
897 411 363)
择要: In this talk, I will present a cell-centered finite volume method on locally uniformly refined composite Cartesian grids. Unlike similar method on composite Cartesian grids (such as those proposed by McCormick Thomas 1986, Bramble-Ewing-Pasciak-Schatz 1988, Johansen-Colella 1998, Papac-HelgadottirRatsch-Gibou 2013 and Kriva-Handlovicova 2016), the method is derived in a very simple way based on finite Volume conservation of mass and flux. The finite volume stencils on composite grids are compact in both two and three space dimensions. I will also describe an efficient multilevel/multigrid (composite grid) iteration technique for the Poisson equation with the cell-centered finite method as well as its application in a three-dimensional wetting problem for moving contact lines. This is joint work with Xianmin Xu (CAS) and Zhongshu Zhao (SJTU).
报告人简介:
应文俊, 上海交通大学数学迷信学院及天然迷信研讨院传授。美国杜克大学计较数学博士, 生物医学工程系博士后,曾任美国密歇根理工大学助理传授。应文俊传授的研讨首要包含求解非线性双曲守恒律方程和奇特扰动反映分散方程的时候空间自顺应网格加密算法,求解刚性体系的大步长不变时候积分方式,求解椭圆型偏微分方程的边境积分方式,和一类基于位势实际的求解庞杂地区上椭圆型,抛物型偏微分方程的笛卡尔直角网格法。研讨触及的范畴包含计较氛围能源学,计较生物物理学,计较电心理学和计较流膂力学等。应文俊传授今朝是杂志Applied Numerical Mathematics的编委。